SPRING AI TEXT SUMMARIZATION WORKFLOW (JAVA)

Efficiently condense long text using LLMs and the Spring Ecosystem.

1. SETUP & CORE TOOL
  • Spring AI: Abstraction layer for LLMs (OpenAI, Gemini).

  • Key Component: Inject the `ChatClient` (via `ChatClient.Builder`) for seamless model interaction.

  • Goal: Create a service that accepts long text and returns a brief summary.

2. IMPLEMENT SUMMARIZATION
  • Prompt Template: Define the instruction for the LLM (e.g., "Summarize the text concisely: {input}").

  • Execution: Use `ChatClient.prompt(template) .call().content()` to trigger the AI call and extract the response text.

  • Result: The service method returns the summarized string.

3. CREATE REST API
  • Controller: Implement a `@RestController` to expose the functionality.

  • Endpoint: Use `@PostMapping` (e.g., `/summarize/normal`).

  • Data Flow: Controller accepts request body (`@RequestBody String text`) and delegates processing to the `SummarizationService`.

4. SCALE & CUSTOMIZE
  • Long Inputs: Use **Chunking** to split large text before summarization.

  • Recursive Summary: Summarize chunks, combine results, and then summarize the combined text for the final output.

  • Control: Adjust the prompt to control output style (e.g., "in five bullet points") or length ("under 100 words").

Best Practices
Handle Errors Gracefully
Cache Results for Repeated Inputs
Secure API Keys (Server-Side Only)